Internet Programming with Java Course

1.7. Достъп до отдалечени ресурси чрез URL
Working with URLs

URL is the acronym for Uniform Resource Locator. It is a reference (an address) to a resource on the Internet. You provide URLs to your favorite Web browser so that it can locate files on the Internet in the same way that you provide addresses on letters so that the post office can locate your correspondents.

Java programs that interact with the Internet also may use URLs to find the resources on the Internet they wish to access. Java programs can use a class called URL in the java.net package to represent a URL address.

Terminology Note: The term URL can be ambiguous. It can refer to an Internet address or a URL object in a Java program. Where the meaning of URL needs to be specific, this text uses "URL address" to mean an Internet address and "URL object" to refer to an instance of the URL class in a program.

What Is a URL?

If you've been surfing the Web, you have undoubtedly heard the term URL and have used URLs to access HTML pages from the Web.

It's often easiest, although not entirely accurate, to think of a URL as the name of a file on the World Wide Web because most URLs refer to a file on some machine on the network. However, remember that URLs also can point to other resources on the network, such as database queries and command output.

Definition: URL is an acronym for Uniform Resource Locator and is a reference (an address) to a resource on the Internet.

The following is an example of a URL which addresses the Java Web site hosted by Sun Microsystems:

As in the previous diagram, a URL has two main components:

· Protocol identifier

· Resource name

Note that the protocol identifier and the resource name are separated by a colon and two forward slashes. The protocol identifier indicates the name of the protocol to be used to fetch the resource. The example uses the Hypertext Transfer Protocol (HTTP), which is typically used to serve up hypertext documents. HTTP is just one of many different protocols used to access different types of resources on the net. Other protocols include File Transfer Protocol (FTP), Gopher, File, and News.

The resource name is the complete address to the resource. The format of the resource name depends entirely on the protocol used, but for many protocols, including HTTP, the resource name contains one or more of the components listed in the following table:

	Host Name
	The name of the machine on which the resource lives.

	Filename
	The pathname to the file on the machine.

	Port Number
	The port number to which to connect (typically optional).

	Reference
	A reference to a named anchor within a resource that usually identifies a specific location within a file (typically optional).

For many protocols, the host name and the filename are required, while the port number and reference are optional. For example, the resource name for an HTTP URL must specify a server on the network (Host Name) and the path to the document on that machine (Filename); it also can specify a port number and a reference. In the URL for the Java Web site java.sun.com is the host name and the trailing slash is shorthand for the file named /index.html.

Creating a URL

The easiest way to create a URL object is from a String that represents the human-readable form of the URL address. This is typically the form that another person will use for a URL. For example, the URL for the Gamelan site, which is a directory of Java resources, takes the following form:

http://www.gamelan.com/

In your Java program, you can use a String containing this text to create a URL object:

URL gamelan = new URL("http://www.gamelan.com/");

The URL object created above represents an absolute URL. An absolute URL contains all of the information necessary to reach the resource in question. You can also create URL objects from a relative URL address.

Creating a URL Relative to Another

A relative URL contains only enough information to reach the resource relative to (or in the context of) another URL.

Relative URL specifications are often used within HTML files. For example, suppose you write an HTML file called JoesHomePage.html. Within this page, are links to other pages, PicturesOfMe.html and MyKids.html, that are on the same machine and in the same directory as JoesHomePage.html. The links to PicturesOfMe.html and MyKids.html from JoesHomePage.html could be specified just as filenames, like this:

Pictures of Me

Pictures of My Kids

These URL addresses are relative URLs. That is, the URLs are specified relative to the file in which they are contained – JoesHomePage.html.

In your Java programs, you can create a URL object from a relative URL specification. For example, suppose you know two URLs at the Gamelan site:

http://www.gamelan.com/pages/Gamelan.game.html

http://www.gamelan.com/pages/Gamelan.net.html

You can create URL objects for these pages relative to their common base URL:

http://www.gamelan.com/page/

like this:

URL gamelan = new URL("http://www.gamelan.com/pages/");

URL gamelanGames = new URL(gamelan, "Gamelan.game.html");

URL gamelanNetwork = new URL(gamelan, "Gamelan.net.html");

This code snippet uses the URL constructor that lets you create a URL object from another URL object (the base) and a relative URL specification. The general form of this constructor is:

URL(URL baseURL, String relativeURL)

The first argument is a URL object that specifies the base of the new URL. The second argument is a String that specifies the rest of the resource name relative to the base. If baseURL is null, then this constructor treats relativeURL like an absolute URL specification. Conversely, if relativeURL is an absolute URL specification, then the constructor ignores baseURL.

This constructor is also useful for creating URL objects for named anchors (also called references) within a file. For example, suppose the Gamelan.network.html file has a named anchor called BOTTOM at the bottom of the file. You can use the relative URL constructor to create a URL object for it like this:

URL gamelanNetworkBottom = new URL(gamelanNetwork, "#BOTTOM");

Other URL Constructors

The URL class provides two additional constructors for creating a URL object. These constructors are useful when you are working with URLs, such as HTTP URLs, that have host name, filename, port number, and reference components in the resource name portion of the URL. These two constructors are useful when you do not have a String containing the complete URL specification, but you do know various components of the URL.

For example, suppose you design a network browsing panel similar to a file browsing panel that allows users to choose the protocol, host name, port number, and filename. You can construct a URL from the panel's components. The first constructor creates a URL object from a protocol, host name, and filename. The following code snippet creates a URL to the Gamelan.net.html file at the Gamelan site:

new URL("http", "www.gamelan.com", "/pages/Gamelan.net.html");

This is equivalent to

new URL("http://www.gamelan.com/pages/Gamelan.net.html");

The first argument is the protocol, the second is the host name, and the last is the pathname of the file. Note that the filename contains a forward slash at the beginning. This indicates that the filename is specified from the root of the host.

The final URL constructor adds the port number to the list of arguments used in the previous constructor:

URL gamelan = new URL("http", "www.gamelan.com", 80,

 "pages/Gamelan.network.html");

This creates a URL object for the following URL:

http://www.gamelan.com:80/pages/Gamelan.network.html

If you construct a URL object using one of these constructors, you can get a String containing the complete URL address by using the URL object's toString method or the equivalent toExternalForm method.

MalformedURLException

Each of the four URL constructors throws a MalformedURLException if the arguments to the constructor refer to a null or unknown protocol. Typically, you want to catch and handle this exception by embedding your URL constructor statements in a try/catch pair, like this:

try {

 URL myURL = new URL(. . .)

} catch (MalformedURLException e) {

 . . .

 // exception handler code here
 . . .

}

Note: URLs are "write-once" objects. Once you've created a URL object, you cannot change any of its attributes (protocol, host name, filename, or port number).

Parsing a URL

The URL class provides several methods that let you query URL objects. You can get the protocol, host name, port number, and filename from a URL using these accessor methods:

getProtocol – Returns the protocol identifier component of the URL.

getHost – Returns the host name component of the URL.

getPort – Returns the port number component of the URL. The getPort method returns an integer that is the port number. If the port is not set, getPort returns -1.

getFile – Returns the filename component of the URL.

getRef – Returns the reference component of the URL.

Note: Remember that not all URL addresses contain these components. The URL class provides these methods because HTTP URLs do contain these components and are perhaps the most commonly used URLs. The URL class is somewhat HTTP-centric.

You can use these getXXX methods to get information about the URL regardless of the constructor that you used to create the URL object.

The URL class, along with these accessor methods, frees you from ever having to parse URLs again! Given any string specification of a URL, just create a new URL object and call any of the accessor methods for the information you need. This small example program creates a URL from a string specification and then uses the URL object's accessor methods to parse the URL:

import java.net.*;

import java.io.*;

public class ParseURL {

 public static void main(String[] args) throws Exception {

 URL aURL = new URL("http://java.sun.com:80/docs/books/"

 + "tutorial/index.html#DOWNLOADING");

 System.out.println("protocol = " + aURL.getProtocol());

 System.out.println("host = " + aURL.getHost());

 System.out.println("filename = " + aURL.getFile());

 System.out.println("port = " + aURL.getPort());

 System.out.println("ref = " + aURL.getRef());

 }

}

Here's the output displayed by the program:

protocol = http

host = java.sun.com

filename = /docs/books/tutorial/index.html

port = 80

ref = DOWNLOADING

Reading Directly from a URL

After you've successfully created a URL, you can call the URL's openStream() method to get a stream from which you can read the contents of the URL. The openStream() method returns a java.io.InputStream object, so reading from a URL is as easy as reading from an input stream.

The following small Java program uses openStream() to get an input stream on the URL http://www.yahoo.com/. It then opens a BufferedReader on the input stream and reads from the BufferedReader thereby reading from the URL. Everything read is copied to the standard output stream:

import java.net.*;

import java.io.*;

public class URLReader {

 public static void main(String[] args) throws Exception {

 URL yahoo = new URL("http://www.yahoo.com/");

 BufferedReader in = new BufferedReader(

new InputStreamReader(yahoo.openStream()));

String inputLine;

while ((inputLine = in.readLine()) != null)

 System.out.println(inputLine);

in.close();

 }

}

When you run the program, you should see, scrolling by in your command window, the HTML commands and textual content from the HTML file located at http://www.yahoo.com/. Alternatively, the program might hang or you might see an exception stack trace.

Connecting to a URL

After you've successfully created a URL object, you can call the URL object's openConnection method to connect to it. When you connect to a URL, you are initializing a communication link between your Java program and the URL over the network. For example, you can open a connection to the Yahoo site with the following code:

try {

 URL yahoo = new URL("http://www.yahoo.com/");

 URLConnection yahooConnection = yahoo.openConnection();

} catch (MalformedURLException e) { // new URL() failed

 . . .

} catch (IOException e) { // openConnection() failed

 . . .

}

If possible, the openConnection method creates a new URLConnection (if an appropriate one does not already exist), initializes it, connects to the URL, and returns the URLConnection object. If something goes wrong--for example, the Yahoo server is down--then the openConnection method throws an IOException.

Now that you've successfully connected to your URL, you can use the URLConnection object to perform actions such as reading from or writing to the connection. The next section shows you how.

Reading from and Writing to a URLConnection

If you've successfully used openConnection to initiate communications with a URL, then you have a reference to a URLConnection object. The URLConnection class contains many methods that let you communicate with the URL over the network. URLConnection is an HTTP-centric class; that is, many of its methods are useful only when you are working with HTTP URLs. However, most URL protocols allow you to read from and write to the connection. This section describes both functions.

Reading from a URLConnection

The following program performs the same function as the URLReader program shown in Reading Directly from a URL.

However, rather than getting an input stream directly from the URL, this program explicitly opens a connection to a URL and gets an input stream from the connection. Then, like URLReader, this program creates a BufferedReader on the input stream and reads from it. The bold statements highlight the differences between this example and the previous.

import java.net.*;

import java.io.*;

public class URLConnectionReader {

 public static void main(String[] args) throws Exception {

 URL yahoo = new URL("http://www.yahoo.com/");

 URLConnection yc = yahoo.openConnection();
 BufferedReader in = new BufferedReader(

 new InputStreamReader(

 yc.getInputStream()));

 String inputLine;

 while ((inputLine = in.readLine()) != null)

 System.out.println(inputLine);

 in.close();

 }

}

The output from this program is identical to the output from the program that opens a stream directly from the URL. You can use either way to read from a URL. However, reading from a URLConnection instead of reading directly from a URL might be more useful. This is because you can use the URLConnection object for other tasks (like writing to the URL) at the same time.

Again, if the program hangs or you see an error message, you may have to set the proxy host so that the program can find the Yahoo server.

Writing to a URLConnection

Many HTML pages contain forms – text fields and other GUI objects that let you enter data to send to the server. After you type in the required information and initiate the query by clicking a button, your Web browser writes the data to the URL over the network. At the other end, a cgi-bin script (usually) on the server receives the data, processes it, and then sends you a response, usually in the form of a new HTML page.

Many cgi-bin scripts use the POST METHOD for reading the data from the client. Thus writing to a URL is often called posting to a URL. Server-side scripts use the POST METHOD to read from their standard input.

Note: Some server-side cgi-bin scripts use the GET METHOD to read your data. The POST METHOD is quickly making the GET METHOD obsolete because it's more versatile and has no limitations on the amount of data that can be sent through the connection.

A Java program can interact with cgi-bin scripts also on the server side. It simply must be able to write to a URL, thus providing data to the server. It can do this by following these steps:

1. Create a URL.

2. Open a connection to the URL.

3. Set output capability on the URLConnection.

4. Get an output stream from the connection. This output stream is connected to the standard input stream of the cgi-bin script on the server.

5. Write to the output stream.

6. Close the output stream.

Hassan Schroeder, a member of the Java development team, wrote a small cgi-bin script named backwards and made it available at the Java Web site, http://java.sun.com/cgi-bin/backwards. You can use this script to test the following example program. You can also put the script on your network, name it backwards, and test the program locally.

The script at our Web site reads a string from its standard input, reverses the string, and writes the result to its standard output. The script requires input of the form string=string_to_reverse, where string_to_reverse is the string whose characters you want displayed in reverse order.

Here's an example program that runs the backwards script over the network through a URLConnection:

import java.io.*;

import java.net.*;

public class Reverse {

 public static void main(String[] args) throws Exception {

if (args.length != 1) {

 System.err.println("Usage: java Reverse "

 + "string_to_reverse");

 System.exit(1);

}

String stringToReverse = URLEncoder.encode(args[0]);

URL url = new URL("http://java.sun.com/cgi-bin/backwards");

URLConnection connection = url.openConnection();

connection.setDoOutput(true);

PrintWriter out = new PrintWriter(

 connection.getOutputStream());

out.println("string=" + stringToReverse);

out.close();

BufferedReader in = new BufferedReader(

new InputStreamReader(

connection.getInputStream()));

String inputLine;

while ((inputLine = in.readLine()) != null)

 System.out.println(inputLine);

in.close();

 }

}

Let's examine the program and see how it works. First, the program processes its command-line arguments:

if (args.length != 1) {

 System.err.println("Usage: java Reverse " +

 "string_to_reverse");

 System.exit(-1);

}

String stringToReverse = URLEncoder.encode(args[0]);

These statements ensure that the user provides one and only one command-line argument to the program, and then encodes it. The command-line argument is the string that will be reversed by the cgi-bin script backwards. It may contain spaces or other non-alphanumeric characters. These characters must be encoded because the string is processed on its way to the server. The URLEncoder class methods encode the characters.

Next, the program creates the URL object--the URL for the backwards script on java.sun.com--opens a URLConnection, and sets the connection so that it can write to it:

URL url = new URL("http://java.sun.com/cgi-bin/backwards");

URLConnection c = url.openConnection();

c.setDoOutput(true);

The program then creates an output stream on the connection and opens a PrintWriter on it:

PrintWriter out = new PrintWriter(c.getOutputStream());

If the URL does not support output, getOutputStream method throws an UnknownServiceException. If the URL does support output, then this method returns an output stream that is connected to the standard input stream of the URL on the server side--the client's output is the server's input.

Next, the program writes the required information to the output stream and closes the stream:

out.println("string=" + stringToReverse);

out.close();

This code writes to the output stream using the println method. So you can see that writing data to a URL is as easy as writing data to a stream. The data written to the output stream on the client side is the input for the backwards script on the server side. The Reverse program constructs the input in the form required by the script by concatenating string= to the encoded string to be reversed.

Often, when you are writing to a URL, you are passing information to a cgi-bin script, as in this example. This script reads the information you write, performs some action, and then sends information back to you via the same URL. So it's likely that you will want to read from the URL after you've written to it. The Reverse program does this:

BufferReader in = new BufferedReader(

 new InputStreamReader(c.getInputStream()));

String inputLine;

while ((inputLine = in.readLine()) != null)

 System.out.println(inputLine);

in.close();

When you run the Reverse program using "Reverse Me" as an argument (including the double quote marks), you should see this output:

Reverse Me

 reversed is:

eM esreveR

