

bul.“Alexander Malinov“ №33., Sofia, 1729, Bulgaria
academy.telerik.com

Telerik Software Academy 2012 1 of 7 facebook.com/TelerikAcademy

Problem 1 – Basic BASIC

Do you know Elio? Elio is a young man who hates almost everything. One of the things he hates the
most is all old programming languages. Recently he found an old diskette with strange code on it. And
because he is very curious he wants to execute the code and view the result. He hates old programming
languages, so he asks you to write a C# program to execute that code and find its output result. Since
Elio is a really good-natured boy, he deserves your help.

That old language actually was a dialect of the well-known programming language BASIC. We will call it
Basic BASIC (BB). So what are the important things about the BB language?

First of all, every single line of the BB code starts with an integer number – the unique identifier of the
line. Every line has unique identifier bigger than all its preceding lines. One BB code line can contain only
one command. After executing the command (and if no GOTO executed), then the code execution
continues from the line with the smallest unique identifier which is bigger than the unique identifier of
the current line. The code execution starts from the line with the smallest unique identifier.

The second important thing about the BB is that you can only use 5 variables. These variables are named
V, W, X, Y and Z. They can only have integer values between -2 000 000 000 and 2 000 000 000, inclusive.
The default value of these 5 variables is 0. In other words, if no value is preliminarily assigned to them
their value will be 0.

Finally, the most important thing in the BB language is the commands. In BB there are 5 types of
commands listed below:

1. Changing the value of a variable. You can assign values to any of these variables by simply using
the assign (=) command. BB also has 2 arithmetic operations available – addition (+) and
subtraction (-). Here are four examples for assigning values to variables: V=-5, X=Y, W=X-Y,
Z=Z+1. Only one arithmetic operation is allowed with a single assigned command. Note that
these lines are invalid: V=X+Y+Z, W=1-4+3, X=-1-X, X=-2--3.

2. Conditional command execution (IF <condition > THEN <command>). The conditions in the IF
operator can only be comparisons: bigger than (>), less than (<) and equal to (=) between
variable and variable, variable and number or number and number. The IF statement executes
the command after the THEN statement if and only if the condition is true. For example the
following BB code will assign value 5 to the X variable only if the Y variable is greater than the Z
variable: IF Y > Z THEN X = 5. If the condition is false, then the code execution continues
exactly from the next line (the line after the IF command).

3. Unconditional branching (GOTO). The GOTO operator unconditionally jumps to a command line
with the specified unique identifier. That line will always exist. For example the command GOTO
10 will continue the code execution from a command with the unique identifier 10. GOTO
“parameter” will be always a number, thus commands like GOTO X will be invalid.

4. Manipulating the output (CLS and PRINT).

a. If the BB code reaches the CLS (clean screen) command, it automatically clears the
content printed so far and starts printing from the beginning.

b. The PRINT command gets the value of a variable and writes it in a single line in the
output. For example PRINT Z will print the value of the Z variable on the output and
then will write a new line.

bul.“Alexander Malinov“ №33., Sofia, 1729, Bulgaria
academy.telerik.com

Telerik Software Academy 2012 2 of 7 facebook.com/TelerikAcademy

5. Command for stopping the code execution – STOP. The STOP command immediately stops the
execution of the BB code.

Note that the BB language ignores all spaces because they do not affect the semantics of the language.

Input

The input data should be read from the console.

The input will consist of valid code written in Basic BASIC (BB), always ending with a line containing the
word “RUN” (see the examples below).

The input data will always be valid and in the format described. There is no need to check it explicitly.

Output

The output data should be printed on the console.

You must write on the console the output result from executing the BB code given in the input.

Constraints

 The given BB code will always be uppercased and valid in the syntax described above.

 Line identifiers will always be between 0 and 10 000, inclusive.

 It is guaranteed that the code will always reach its STOP command (or the end of the code) after
no more than 1 000 000 command executions.

 None of the 5 variables (V, W, X, Y and Z) will have values smaller than -2 000 000 000 or bigger
than 2 000 000 000 in any part of the code execution.

 Allowed working time for your program: 0.8 seconds.

 Allowed memory: 16 MB.

Examples

Input example Output example

5 X=-1
6 IF X=-1 THEN X=0
7 PRINT X
8 CLS
10 PRINT X
20 X=X+1
30 IF X < 4 THEN GOTO 10
40 STOP
50 PRINT X
RUN

0
1
2
3

0 X = 1
1 Y = 2
2 Z = Y - X
5 PRINT X
6 PRINT Z
10 X = X +1
20 IF X = Y THEN GOTO 2
RUN

1
1
2
0

bul.“Alexander Malinov“ №33., Sofia, 1729, Bulgaria
academy.telerik.com

Telerik Software Academy 2012 3 of 7 facebook.com/TelerikAcademy

Problem 2 – Crossword

Write a program to create a crossword by a given list of words. The crossword must contain exactly N
lines with N characters. You will be given N*2 words containing exactly N capital Latin letters (‘A’ – ‘Z’).

The crossword is a combination of those words placed in a table (with no spaces or empty cells). You can
combine the words either horizontally (in a row) or vertically (in a column), but each word should match
one of the pre-given words. Each line and each column of the crossword should contain a word from the
given list of words. The words should be placed from left to right and from the top to the bottom of the
crossword. You are not obligated to use all words, you can also put the same word more than once but
the only words you can use are the words you are given.

Input

The input data should be read from the console.

On the first input line you will be given an integer N – the width and the height of the crossword.

On the next 2*N lines you will be given 2*N words with exact length N. You must use these words for
creating the crossword.

The input data will always be valid and in the format described. There is no need to check it explicitly.

Output

The output data should be printed on the console. You should print the generated crossword.

If more than one solution exists you must print the crossword that is first in the lexicographical order.
This means that if we concatenate the lines of the produced crossword from the first to the last, the
obtained sequence of characters should be the smallest in the alphabetical order among all possible
crosswords that can be generated using the given words.

If no crossword can be made with the given words then print “NO SOLUTION!” on the only output line
as shown on the second example below.

Constraints

 N will be between 1 and 6, inclusive.

 Allowed working time for your program: 0.75 seconds.

 Allowed memory: 16 MB.

Examples

On the first example there is more than one solution but the one that is shown is the lexicographically
lowest one.

Input example Output example

4
FIRE
ACID
CENG
EDGE
FACE
ICED
RING
CERN

FACE
ICED
RING
EDGE

Input example Output example

3
ABC
DEF
GHI
JKL
MNO
PQR

NO SOLUTION!

bul.“Alexander Malinov“ №33., Sofia, 1729, Bulgaria
academy.telerik.com

Telerik Software Academy 2012 4 of 7 facebook.com/TelerikAcademy

On the second example there is no solution.

Problem 3 – Indices

You are given a zero-based array ARR with N integer numbers in it. Each element of ARR is an index in
the ARR (seems like a recursive definition, right?).

You are also given the sequence that starts from the first element (0) then moves to the element with
index ARR[0], then moves to the element with index ARR[ARR[0]], then moves to the element with
index ARR[ARR[ARR[0]]], and so on…

The full sequence is generated by performing these actions until you reach an index that is outside the
bounds of the array ARR. Of course cycles are absolutely possible. When a cycle is started in the
sequence it may never reach any index that is outside the bounds of the ARR.

Write a program that outputs the elements in the given sequence. When you find cycle you should
output it in round brackets as shown in the examples below. Please note that no spaces should be
printed between the brackets and the number.

Input

The input data should be read from the console.

In the first input line you are given the number N of the elements in ARR.

From the second line you should read the numbers in the array ARR separated by a single space.

The input data will always be valid and in the format described. There is no need to check it explicitly.

Output

The output data should be printed on the console.

On the only output line you should print the described sequence. All the cycles should be printed with
round brackets, with no spaces between the brackets and the numbers.

Constraints

 N will be between 1 and 200 000, inclusive.

 Numbers in ARR will be between -2 000 000 000 and 2 000 000 000, inclusive.

 Allowed working time for your program: 0.25 seconds.

 Allowed memory: 16 MB.

Examples

Input example Output example

6
1 2 3 5 7 8

0 1 2 3 5

6
1 2 3 5 7 1

0(1 2 3 5)

bul.“Alexander Malinov“ №33., Sofia, 1729, Bulgaria
academy.telerik.com

Telerik Software Academy 2012 5 of 7 facebook.com/TelerikAcademy

Problem 4 – Bombing Cuboids

You are given a rectangular cuboid of size W (width), H (height) and D (depth) consisting of W * H * D
cubes, each colored in some color. Each color is denoted by a unique capital letter from the Latin
alphabet: 'Y' is yellow, 'R' is red, 'B' is blue, 'G' green, etc. When a bomb with power p is detonated at
certain position {w, h, d} inside the cuboid it destroys all the cubes around it which are located at
distance ≤ p from the bomb, while all other cubes remain unaffected.

After a detonation the destroyed cubes leave an empty space in the cuboid and the cubes staying above
them fall down due to the gravitation and fill the empty space. The fall down process moves the cubes
to smaller coordinates by the 'height' axis.

The distance between the bomb and given cube is calculated as standard Euclidian distance in the 3D
space from the bomb's center to the given cube's center. For example, the distance between a bomb
located at position {5, 6, 2} and the cube at position {3, 0, 4} is approximately 6.63324958.

At the figure below a cuboid of size 5 x 4 x 3 is shown and the detonation of a bomb with power 2 at
coordinates {0, 0, 0} is illustrated along with the cubes fall down after it:

Your task is to write a program which enters a cuboid from the console and simulates over it a sequence
of N bomb explosions (at given coordinates and with given power) and calculates how many cubes of
each color are destroyed by the bomb attack.

All explosions happen one after another: the first bomb is detonated, it creates an empty space in the
cuboid, the cubes above the empty space fall down, then the second bomb is detonated, etc.

Input

The input data should be read from the console. At the first line 3 integers W, H and D are given
separated by a space. These numbers specify the width, height and depth of the cuboid. At the next H
lines the colors of the cubes in the cuboid are given as D sequences of exactly W letters. Each sequence
of W letters is separated from the next with a single space. At the next line a single integer N is given –
the number of bombs. At the next N lines the bombs are given, each as a sequence of 4 integers
separated by a space: w, h, d, and p.

The input data will be correct and there is no need to check it explicitly.

Output

The output data should be printed on the console.

At the first line of the output print the total number cubes destroyed. On the next few lines print the
cubes destroyed by colors in the following format: color followed by a space and by amount. Only colors
with non-zero amount of cubes should be listed.

bul.“Alexander Malinov“ №33., Sofia, 1729, Bulgaria
academy.telerik.com

Telerik Software Academy 2012 6 of 7 facebook.com/TelerikAcademy

The colors should be listed in alphabetical order.

Constraints

 The numbers W, H and D are all integers in the range [1…100].

 The letter sequence in the input consists of capital Latin latters only

 The number N is an integer in the range [0…20].

 The value w is an integer in the range [0…W-1].

 The value h is an integer in the range [0…H-1].

 The value d is an integer in the range [0…D-1].

 The value p is an integer in the range [1…50].

 Allowed work time for your program: 0.15 seconds.

 Allowed memory: 16 MB.

Examples

Input Output Input Output

4 3 5
AAAA AAAA AAAA AAAA AAAA
AAAA AAAA AAAA AAAA AAAC
ABAA AAAA AAAA AAAA AAAA
3
1 2 3 1
0 0 0 2
0 0 0 2

22
A 21
B 1

7 4 3
BRYYYYY RYYYYGY YRYYYYY
YYYGBGY YYYYGGG YYYGGGY
RYBYGYY RYYYYGY RYBYGBB
RYBYGYY RBYYGYY RYBYGBB
2
6 3 2 4
1 1 1 2

72
B 10
G 14
R 6
Y 42

Note that in the first example the first line of letters is the bottom of the cuboid (h=0) and the last line of
letters (h=2) is the top of the cuboid. More precisely, the letter "B" at the first example is located at
position {1, 2, 0} and the letter "C" is located at position {3, 1, 4}.

At the both examples the locations of the explosions are shown in gray background.

Problem 5 – Academy Tasks

As you know in our Academy we give you some problems to solve. You must first solve problem 0. After
solving each problem i, you must either move on to problem i+1 or skip ahead to problem i+2. You are
not allowed to skip more than one problem. For example, {0, 2, 3, 5} is a valid order, but {0, 2, 4, 7} is
not because the skip from 4 to 7 is too long.

You are given an array pleasantness (0-based), where pleasantness[i] indicates how much you like
problem i. We will let you stop solving problems once the range of pleasantness you've encountered
reaches a certain threshold. Specifically, you may stop once the difference between the maximum and
minimum pleasantness of the problems you've solved is greater than or equal to the integer variety. If
this never happens, you must solve all the problems. Return the minimum number of problems you
must solve to satisfy our requirements.

Input

The input data should be read from the console.

bul.“Alexander Malinov“ №33., Sofia, 1729, Bulgaria
academy.telerik.com

Telerik Software Academy 2012 7 of 7 facebook.com/TelerikAcademy

On the first input line you will be given the list of numbers in pleasantness separated by a comma and a
space (see the examples below).

On the second input line you will be given the integer variety.

The input data will always be valid and in the format described. There is no need to check it explicitly.

Output

The output data should be printed on the console.

On the only output line you must print the minimum number of problems you must solve to satisfy our
requirements.

Constraints

 pleasantness will contain between 1 and 50 elements, inclusive.

 Each element of pleasantness will be between 0 and 1000, inclusive.

 variety will be between 1 and 1000, inclusive.

 Allowed working time for your program: 0.1 seconds.

 Allowed memory: 16 MB.

Examples

Input Output Explanation

1, 2, 3
2

2

Solve the 0-th problem and the 2-nd after it.

1, 2, 3, 4, 5
3

3

Obviously, the first and the last problems should be
solved. Skip a problem ahead twice in a row.

6, 2, 6, 2, 6, 3, 3, 3, 7
4

2

You can stop after solving the first 2 problems.

	Problem 1 – Basic BASIC
	Input
	Output
	Constraints
	Examples

	Problem 2 – Crossword
	Input
	Output
	Constraints
	Examples

	Problem 3 – Indices
	Input
	Output
	Constraints
	Examples

	Problem 4 – Bombing Cuboids
	Input
	Output
	Constraints
	Examples

	Problem 5 – Academy Tasks
	Input
	Output
	Constraints
	Examples

